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ABSTRACT: Thermal management has become a critical
aspect in next-generation miniaturized electronic devices.
Efficient heat dissipation reduces their operating temperatures
and insures optimal performance, service life, and efficacy.
Shielding against shocks, vibrations, and moisture is also
imperative when the electronic circuits are located outdoors.
Potting (or encapsulating) them in polymer-based composites
with enhanced thermal conductivity (TC) may provide a
solution for both thermal management and shielding
challenges. In the current study, graphene is employed as a
filler to fabricate composites with isotropic ultrahigh TC (>12 W m−1 K−1) and good mechanical properties (>30 MPa flexural
and compressive strength). To avoid short-circuiting the electronic assemblies, a dispersion of secondary ceramic-based filler
reduces the electrical conductivity and synergistically enhances the TC of composites. When utilized as potting materials, these
novel hybrid composites effectively dissipate the heat from electronic devices; their operating temperatures decrease from 110 to
37 °C, and their effective thermal resistances are drastically reduced, by up to 90%. The simple filler dispersion method and the
precise manipulation of the composite transport properties via hybrid filling offer a universal approach to the large-scale
production of novel materials for thermal management and other applications.
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■ INTRODUCTION

The denser and faster components of next-generation
miniaturized electronics,1−3 optoelectronics, and medical
devices produce an increased amount of heat during their
operation (>5 W cm−2).4 Without efficient thermal manage-
ment, heat accumulation may damage these devices or severely
reduce their speed, efficiency, and reliability.5 Conventional
heat removal solutions (e.g., by fans or metal heat sinks) may
solve the heat accumulation challenge, but do not provide
shielding against shock, vibration, moisture, and corrosive
agents for electronic devices located outdoors.
Potting6,7 or conformal coating of these electronic assemblies

in a polymer-based composite with enhanced thermal
conductivity (TC) may provide a solution for both thermal
management and shielding challenges. Traditionally, the target
TC values (>1 W m−1 K−1) were met by dispersing high
loadings8,9 (50−80 vol %) of thermally conductive (TC = 30−
300 W m−1 K−1) fillers in thermally isolating polymers (TC <
0.3 W m−1 K−110). To avoid short-circuiting the electronic
components, only electrically isolating ceramic-based fillers,
such as SiC,11,12 AlN,6,13 BN,6,7 or Al2O3,

14 were utilized. BN is
considered the most efficient, due to its wide band gap (ranging
from 3.6 to 7.1 eV15), low thermal expansion coefficient, and
high moisture resistance. High loading and high filler densities,
however, result in heavy weights and expensive composites with
poor mechanical properties (e.g., susceptible to thermal

cracking and complicated processing), the combination of
which limit their applications.
In recent years, the growing availability of nanoscale carbon

fillers with extraordinary thermal properties and low densities
(e.g., graphene with TC = ∼5000 W m−1 K−116 and ρ = 1.2 g
m−3) have yielded lightweight composites with enhanced TC at
low filler loading.17,18 Unfortunately, carbon-based fillers are
electrically conductive (>107 S cm−1). If the filler loading
exceeds the percolation threshold, it also significantly increases
the electrical conductivity (EC) of some potting composite
materials (EC > 10−3 S cm−119−22) and short-circuits the
electronic assemblies. A possible solution to this phenomenon
is the loading of a secondary filler (termed “hybrid filler
loading”). The hybrid loading was previously shown to
synergistically increase the TC of composites,17,23−25 and, as
we recently demonstrated, if the secondary filler is electrically
insulating, the hybrid loading may also significantly decrease
their EC.26

In the current study, optimized hybrid composites with
ultrahigh isotropic TC, low EC, and good mechanical
properties are fabricated by means of a facile and scalable
method. When utilized as potting materials, these hybrid
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composites effectively dissipate the heat generated in electronic
devices and drastically reduce their maximal operating temper-
atures.

■ EXPERIMENTAL SECTION
Materials. Graphene nanoplatelets (GnPs with 15 μm lateral size

and 10 nm thickness; XG-Sciences), micrometer-sized boron-nitride
platelets (μm-BNs, 110 μm lateral size and 50 nm thickness; Advanced
Ceramics), boron-nitride nanoparticles (nm-BNs, 110 nm; Hongwu),
bisphenol A diglycidyl ether (EPON 828; Momentive), polyether
triamine hardener (JEFFAMINE T-403; Momentive), 3-
(glycidoxypropyl)trimethoxysilane (silane, Acros), pluronic F-127 (F-
127, Sigma-Aldrich), and commercial potting material (CM,50−3182
NC, epoxies) were used as received.
Composite Preparation. Fillers in either an epoxy resin or a

hardener (1 g of epoxy resin to 0.38 g of hardener) are added to a
planetary centrifugal mixer (Thinky, ARE-31027). Zirconia balls
measuring 5 mm were placed into the mixing container. The materials
are mixed for 10 min at 2000 rpm and deaerated for 5 min at 2200
rpm. Then, the zirconia balls are removed and the composites are cast
into silicone molds, shaped as detailed in corresponding ASTMs, and
cured for 12 h at 80 °C. During the mixing process, the combination of
rotational and revolving motions (Figure 1d) generates a spiral flow,
along with rising and falling convection currents. The planetary
motion also throws the zirconia balls strongly against each other,
generating high impact energy and compresses the adjacent fillers, to
form a denser filler network with lower phonon scattering.26,28 In
contrast to other dispersion methods, the planetary mixer is an
extremely effective method for dispersing high filler loadings. The lack
of mechanical blades eliminates the entrapment of air, thereby
producing air-free composites with homogeneous filler dispersions. It
is easily scalable up to 20 L,29 which is highly significant for future
large-scale production and the commercialization of these composites.
Composite Characterization. Thermal conductivity of bulk

samples was measured using differential scanning calorimetry30

(section 1.1 in the Supporting Information) or the transient plane
heat source method (ISO 22007-2). Electrical conductivity measure-
ments were conducted using a four-probe configuration on square-
shaped samples (10 × 10 × 1 mm3). Mechanical properties of the
hybrid composites are determined by measuring at least seven
duplicates by Instron 5982. The sample size and test conditions were

adjusted according to ASTM D790 (flexural strength test) and ASTM
D695 (compressive strength test). A high-resolution, cold, field
emission gun scanning electron microscope (SEM, JSM-7400F, JEOL)
was used to determine the lateral dimensions of the fillers and their
dispersion in the epoxy matrix.

Thermal Management. Silicon carbide Schottky diodes
(D06S60) were mounted on FR4 printed circuit boards and potted
by a 4 mm thick composite layer. The diodes’ power dissipation was
kept constant (power = 2 W) by a Keithley 2400 SourceMeter. The
operating temperatures of the devices were monitored by a FLIR E60
thermal camera and the local hotspot (Thotspot) by a type K
thermocouple. At least three heating (20 min)−cooling (160 min)
cycles were monitored.

■ RESULTS AND DISCUSSION

First, a facile and scalable filler dispersion method is presented.
Then, the effect of hybrid filler loading on thermal, electrical,
and mechanical properties of polymer-based composites is
evaluated. A demonstration of heat dissipation efficiency of
optimized hybrid composites concludes this work.

Manufacturing of Composites. Thermally conductive
graphene or BN nanoplatelets (GnPs or μm-BNs, Figure 1a,b),
with micrometer-size lateral dimensions and nanosize thick-
nesses, were dispersed in an insulating epoxy resin in a
planetary mixer with zirconia balls (Figure 1d and Experimental
Section). The high rotational and revolving motions applied a
powerful acceleration force that generated strong material
convection, while zirconia balls significantly increased the
compression and shear forces applied on the fillers. When
coupled with optimized filler surface treatment (Supporting
Information section 2.3), this scalable mixing technique
resulted in air-free composites with well-dispersed filler.26 In
the hybrid composites, the secondary filler (spherical nanosize
BN, nm-BN in Figure 1c) was dispersed in the epoxy hardener
and then homogeneously integrated between the platelets
(Figure 1e), during epoxy resin and hardener mixing. An
optimal primary-to-secondary filler ratio (μm-BN:nm-BN or
GnP:nm-BN, vide infra) was found to promote a platelet−

Figure 1. SEM micrographs of (a) graphene (GnPs), (b) μm-BN platelets, and (c) nm-BN spheres. (d) Schematics of the planetary dispersion
process, assisted by zirconia balls to increase the compression forces (see Composite Preparation in the Experimental Section). (e) SEM micrograph
of a fractured hybrid composite. The nm-BN spheres (marked with white arrows) are homogeneously dispersed between the GnPs. (f) Schematics
of a hybrid composite. The blue platelets and red spheres indicate GnP/μm-BN and nm-BN, respectively.
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sphere network (schematically depicted in Figure 1f) with an
increased number of thermally conductive pathways.
Filler Effect on the TC, EC, and Mechanical Properties

of Composites. The electrical and the thermal conductivities
of the fillers (Table 1) dictated whether both composite
transport properties were enhanced, or just the TC (Figure 2).

Boron-Nitride-Based Composites. Electrically insulating
composites were prepared by the integration of μm-BN
platelets into the epoxy matrix. The TC of these composites
increased significantly from 0.18 to 2.9 W m−1 K−1 (at filler
volume fraction of φ = 0.44, Figure 2a), corresponding to a
thermal conductivity enhancement factor (TCEF = (TC
enhancement %)/(filler vol %)) of 36. This TCEF is
comparable to the TCEF achieved by complex multistep
dispersion methods35−37 and substantially surpasses the TCEF
values (=10) attained by other simple one-step mixing
techniques.38 As expected, the EC of BN-based composites
remains unaltered (empty circles in Figure 2a), similar to the
values of a neat polymer matrix.
Graphene-Based Composites. The utilization of GnPs as a

filler results in thermally and electrically conductive materials
(squares in Figure 2a), due to the GnPs’ extraordinary electric
and thermal conductance (Table 1). An isotropic ultrahigh TC
of 12.4 W m−1 K−1 is achieved at φGnP = 0.24 and corresponds
to a remarkable TCEF of 283. In contrast to the gradual
increase in TC, the EC of GnP-based composites increases
abruptly (by ∼16 orders of magnitude, Figure 2a), which is in
good agreement with previous reports.19 Consequently, potting
electronic devices within these electrically conductive compo-
sites will short-circuit, overheat, and damage them.
Thermal Percolation Thresholds. Interestingly, thermal

percolation thresholds were observed in both the GnP- and
μm-BN-based composites at φ = 0.17 (red arrows in Figure
2a). These thermal percolation values are comparable to the
calculated geometrical percolation thresholds (0.10 < φc <

0.27) in systems with isotropically oriented, impermeable
platelets with high aspect ratios (>50 and >1000 for graphene
and BN platelets used in this study).39,40 Below the percolation
thresholds, the polymer mediates between adjacent platelets
and the TC in this region is in excellent agreement with Nan’s
model41 (eq S2 in the Supporting Information and the dotted
lines in Figure 2a), assuming that high interfacial thermal
resistance exists between the thermally conductive fillers,
homogeneously dispersed in the insulating matrix. Above the
threshold, the sharp rise in TC indicates that a 3-D network,
with an increased number of direct platelet-to-platelet contacts
and decreased polymer-mediated boundaries, has formed. The
adjacent platelets (GnP or μm-BN) are pressed together during
mixing by the zirconia balls (Figure 1d), closing the gaps
between them to form a denser network with lower phonon
scattering.26 The TC in this region obeys the adjusted critical
power law (eq S3 in the Supporting Information and the full
lines in Figure 2a).42

Effects of Filler Size on TC. TC suppression with decreasing
filler lateral size (i.e., increased interface densities) was observed
in both BN- and GnP-based composites (Figure S3 in the
Supporting Information), which may be explained by the
diffuse surface scattering of heat carriers.43,44 Accordingly, the
hybrid composites were loaded by primary fillers with largest
lateral dimensions (110 μm BNs and 15 μm GnPs).

Hybrid Composites. The EC and the TC of composites were
further tuned by controlling the concentration of the secondary
filler. The electrically insulating and thermally conductive nm-
BNs were homogeneously dispersed (Figure 1e) together with
GnPs or μm-BNs. To maximize the TC, while attaining the
electrical and mechanical properties required for potting
applications, we optimized the total filler loading, the
primary-to-secondary filler ratio (Figure S4 in the Supporting
Information), and the filler surface treatment (Figure S5 in the
Supporting Information). The TC of the optimized hybrids is
enhanced (by 72% for BN-based hybrid1 and by 22% for GnP-
based hybrid2, Figure 2b) compared to single filled composites,
suggesting a genuine synergistic effect. The nm-BN particles
(red spheres in Figure 1f) dispersed between the platelets (blue
disks in Figure 1f) increased the thermal coupling between
them, on one hand, and acted as electrical insulators to
drastically reduce the EC of the GnP-based composites
(diamonds in Figure 2b), on the other. Both hybrid systems
(Table 2) show good mechanical properties (>30 MPa flexural

Table 1. TC and EC of Selected Materialsa

EC (S cm−1) TC (W m−1 K−1)

GnP >10731 ∼2000−530032

boron nitride <10−833 >30034

epoxy 10−16 0.19
aDominant properties are marked in bold.

Figure 2. (a) TC and EC of composites as a function of filler type and volume fraction (φ). The dotted and full lines are fits to the Nan’s (eq S2)
and adjusted percolation (eq S3) models, respectively. The slopes’ intersections (marked by red arrows) reveal the thermal percolation thresholds.
(b) TC of composites with total filler loading of φ = 0.17: Hybrid1 composite filled with φμm‑BN = 0.15 and φnm‑BN = 0.02; hybrid2 composite filled
with φnm‑GnP = 0.16 and φnm‑BN = 0.01. Note that some error bars assimilated into the markers, due to the small measurement errors.
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and compressive strength), comparable to commercial potting
materials45 but with increased TC, significantly lower filler
loading (0.80 vs 0.17) and density, and enhanced workability.
Thermal Management. Heat dissipation efficiency was

evaluated by potting an electronic device (e.g., diode in Figure
3a,b and Experimental Section) in the electrically insulating and

thermally conductive hybrid composites and monitoring the
temperatures via thermal imaging (Figure 3c and Figure S6 in
the Supporting Information). The operating temperatures of
the devices were recorded as a function of their operating times
(Figure 3d), and the effective thermal resistances were
calculated as follows:46,47

θ = −T T( )/powereff hotspot ambient (1)

where Thotspot is the maximal temperature (usually near the
diode’s surface) at steady operating conditions, Tambient is the
temperature of the surrounding environment (27 °C), and
power is the electric power consumption of the electronic
device.
Potting the electronic device in a thermally insulating epoxy

matrix (0.19 W m−1 K−1) demonstrated extremely high θeff (48
K W−1), manifested by significant heat accumulation near the

heat-emitting diode, with a 110 °C “hotspot” (region where the
local temperature is significantly higher than the average
temperature, marked by a black arrow in Figure 3c). The highly
loaded (φBN = 0.80) commercial material (CM) produced only
slight heat dissipation efficiency, with a 55 °C hotspot (marked
by red arrow) and θeff of 18 K W−1. In comparison, the hybrid1
composite (μm-BN:nm-BN), with its significantly lower
loading (φ = 0.17), achieved superior thermal management
(θeff = 10 K W−1 and 45 °C hotspot, marked by green arrow).
Finally, encapsulating the electronic circuit within a highly
thermally conductive and electrically isolating hybrid2 compo-
site (GNP:nm-BN) reduced the device’s operating temperature
notably from 110 to 37 °C and its θeff by 90% (from 48 to 5 K
W−1). Remarkably, the hotspot was practically eliminated
(Figure S6 in the Supporting Information) as predicted by
recently published numerical studies.48,49 The attained low and
uniform temperature profile across the devise ensures its
enhanced service life and efficacy.

■ CONCLUSIONS
A scalable and facile dispersion method was utilized to fabricate
composites with ultrahigh thermal conductivity, low electrical
conductivity, and good mechanical properties at low filler
loading. Control over the transport properties was achieved by
forming a hybrid 3-D network incorporating nm-BN with μm-
BN or GnP. The secondary filler (nm-BN) increased the
amount of thermally conductive pathways, on one hand, and
disconnected the electrically conductive network, on the other.
Therefore, when utilized as a potting material, these hybrid
composites effectively dissipate the heat from electronic devices
and drastically reduce their operating temperatures (from 110
to 37 °C), while providing shielding against external shock and
vibration. The suggested, simple dispersion method and the
accurate control of composite transport properties offer a
universal approach to the large-scale production of new
composites for future thermal management applications.
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Table 2. Properties of Hybrid and Commercially Available Potting Materials

filler
type φ

TC
(W m−1 K−1)

flexural strength
(MPa)

compressive strength
(MPa) EC (S cm−1)

density
(g cm−3) workability

commercial material45 BN 0.80 1.66 65 90 4.9 × 10−16 2.3 poor
hybrid1 μm-BN 0.15 1.84 ± 0.10 42 ± 1 108 ± 3 5.0 × 10−16 1.2 good

nm-BN 0.02
hybrid2 GnP 0.16 4.72 ± 0.10 32 ± 2 60 ± 3 4.0 × 10−15 1.1 good

nm-BN 0.01

Figure 3. Photographs and schematics of: (a) an electronic device, (b)
electronic devices potted in thermally insulated epoxy matrix (bottom
left), and thermally conductive hybrid2 (bottom right; the composition
is detailed in Table 2). (c) Thermal micrograph of electronic circuits
potted by neat epoxy (upper right), commercial thermal material
(bottom left), hybrid1 (bottom right), and hybrid2 (upper left)
composites after 10 min of operation. Arrows indicate hotspot regions.
(d) Maximum temperatures (Thotspot) of the electronic circuits as a
function of their operation time. Note the error bars assimilated into
the markers, due to the small measurement errors.
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■ ABBREVIATIONS
EC = electrical conductivity
CM = commercial potting material
GnPs = graphene nanoplatelets
nm-BNs = boron-nitride nanoparticles
TC = thermal conductivity
μm-BNs = micrometer-sized boron-nitride platelets
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